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Abstract. We study the spectral geometry of the Hopf fibrationS1 → S3 → S2 and determine
the right invariant metrics onS3 for which there exist eigenforms of the Laplacian onS2

which pull back to eigenforms of the Laplacian onS3. We show that the pull-back of the
volume form onS2 can be an eigenform of the Laplacian onS3 with non-zero eigenvalue.
We show that ifG → P → Y is a principal bundle with a bundle metric and that if
H 1(G; C) = 0, then eigenvalues cannot change. Thus eigenvalues do not change for the
fibrationsSO(n − 1) → SO(n) → Sn−1 andSP IN(n − 1) → SP IN(n) → Sn−1 if n > 4.
We also study the corresponding questions in the complex category for the fibration of the Hopf
manifold S1 × S3 → S2.

1. Introduction

Bérard Bergery and Bourguignon [4] discuss the Laplacian of a Riemannian submersion and
provide an application to quantum physics. They note: ‘Recently, there has been a renewed
interest in classical physics for non-bijective canonical transformations (see [5, 18]). This
very general expression should not be taken literally, but more in the sense that certain
interesting maps between configuration spaces turn out to be nonlinear and non-bijective.
From a mathematician’s point of view, these maps are in fact extremely nice (namely,
coverings or Hopf fibrations in the examples that we detail later). When going to the
quantum level, one has to describe how the spectrum of the quantum operators are related.
Once more, the quantum operators are not the most general operators, but very natural ones
related to the Riemannian geometry of the situation (for example the Laplace operator of a
Riemannian metric plus a potential for the energy).’

Boiteux [5] studies the Coulumb potential in two and three dimensions and shows that
non-bijective transformations require a fibre-bundle formulation of mechanics. He shows
that the Hopf fibration leads to an inverse harmonic oscillator problem. Boiteux notes ‘in
quantum mechanics, those transformations connect operators with different spectra which as
such cannot be deduced from one another by unitary transformations’. Kibler and Négada
[14, 15] extend the work of Boiteux to discuss the Kustaanheimo–Stiefel transformation for
the hydrogen atom and to discuss the Stark and Zeeman effects in hydrogen ions. For
other related work on non-bijective canonical transformations, we refer to Asoreyet al [1],
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Cerdeira [7], Dehghani and Sobouti [8], Gracia-Bondı́a [13], Kibler et al [16] and to Kibler
and Winternitz [17].

The present paper is devoted to the study of the spectral geometry of the Hopf fibration
and of certain generalizations; the Hopf fibration arises as a regularization of Kepler motion
[4]. We shall be interested in the relationship between the spectrum of the base and of
the total space of the bundle provided by pull-back; this is the transformation discussed by
Boiteux [5].

We establish some notational conventions. IfM is a closed Riemannian manifold, let
1
p

M be the Laplace Beltrami operator on the space of smoothp formsC∞3pM. Let

E(λ,1
p

M) = {8p ∈ C∞3pM : 1p

M8p = λ8p}
be the eigenspaces of1p

M. Let π : Z → Y be a Riemannian submersion whereZ andY
are closed Riemannian manifolds. Pull back defines a natural map

π∗ : C∞3pY → C∞3pZ.

If the pull-back of every eigenform of the Laplacian onY is an eigenform of the Laplacian
on Z, then the eigenvalue cannot change, see theorem 2.1 for details. In this paper, we
will be interested in the case in which a single eigenvalue can change. That means we
want to construct examples of ap form 8p so that8p ∈ E(λ,1p

Y ) andπ∗8p ∈ E(µ,1p

Y )

for λ 6= µ. It is known this is not possible ifp = 0 or if µ < λ, see theorem 2.1 for
details. Muto [19, 20] constructed examples withp = 2 where eigenvalues can change.
The simplest example is provided by the Hopf fibrationπ : (S3, g3) → (S2, 1

4g2) where
gn is the standard metric onSn. If ν2 is the volume form onS2, thenν2 ∈ E(0,12

S2) and
π∗ν2 ∈ E(4,12

S3).

In section 2, we study the real spectral geometry of the Hopf fibration. We identifyS3

with the unit quaternions or equivalently withSU(2) to see thatS3 is a Lie group. Letζ 1,

ζ 2, ζ 3 be the usual orthonormal basis for the set of right invariant 1-forms whereζ 1 spans
the vertical space ofπ; see section 2 for more precise definitions. Ifg̃3 is a right invariant
metric onS3 so thatπ : (S3, g̃3) → (S2, 1

4g2) is a Riemannian submersion, then there exist
α > 0 andβ = (β2, β3) so that

g̃3 := α2(ζ 1 − β2ζ
2 − β3ζ

3) ◦ (ζ 1 − β2ζ
2 − β3ζ

3)+ ζ 2 ◦ ζ 2 + ζ 3 ◦ ζ 3.

The fibre circles ofπ are geodesics in the metric̃g3 if and only if β = 0. If β = 0, we
show thatπ∗ν2 ∈ E(4α2,12

S3) and that no other eigenvalue changes. Ifβ 6= 0, we show
no eigenvalue changes; see theorem 2.3 for details.

In section 3, we study the principal bundles. LetG be a compact Lie group with
vanishing first de Rham cohomology group. LetG → P

π−→Y be a principal bundle with
fibre G. If we choose a bundle metric forP, we show eigenvalues cannot change; thus
in particular eigenvalues cannot change for the fibrationsSO(n − 1) → SO(n) → Sn−1

or SP IN(n − 1) → SP IN(n) → Sn−1 if n > 4. We note that the Hopf fibration is the
fibration SP IN(2) → SP IN(3) → S2. Conversely, ifH 1(G; C) 6= 0, we show there
exists a principalG bundle overS3 where an eigenvalue changes.

In section 4, we generalize the Hopf fibration to the complex setting and study the
holomorphic fibrationπ : S1 × S3 → S2 of the Hopf manifold. We will show that
ν2 ∈ E(0,11,1

S2 ) andπ∗ν2 ∈ E(µ̃,1
1,1
S1×S3) for µ̃ > 0 so again this provides an example

where the eigenvalue of the complex Laplacian on forms of degree(1, 1) can change. We
discuss the spectral resolution of the complex Laplacian10,0 in terms of the real Laplacian
for the Hopf manifold; this is of interest as the Hopf manifold is not Kaehler.

The spectral geometry of principal bundles is an important one in gauge-field theory
and we hope these results will be useful in further investigations.
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2. The real spectral geometry of the Hopf fibration

We begin by reviewing the geometry of Riemannian submersions. Letπ : Z → Y be
a Riemannian submersion. We shall use capital letters for tensors and forms on the base
manifold Y and lower-case letters for tensors and forms on the total spaceZ. Let ρV and
ρH be orthogonal projection on the vertical and horizontal distributionsV and H of the
submersion. Let{ei} be a local orthonormal frame forV and let{fa} be a local orthonormal
frame forH. Let ∇Z be the Levi-Civita connection onZ. Define the non-normalized mean
curvature vectorθ and the curvature tensorω by

θ := ρH(∇Z
ei
ei) and ωabi = 1

2g([fa, fb], ei).

The fibres are minimal if and only ifθ = 0; the horizontal distribution is integrable if and
only if ω = 0. We letω act on the exterior algebra by defining

E := ωabi ext(ei) int(f a) int(f b)

where {ei} and {f a} are the dual coframes for the vertical and horizontal codistributions
V∗ and H∗ of the Riemannian submersion; we adopt the Einstein convention and sum
over repeated indices. Let d denote exterior differentiation andδ the adjoint operator,
codifferentiation. We refer to [10–12, 22] for the proof of the following result.

Theorem 2.1. Let π : Z → Y be a Riemannian submersion of closed manifolds.
(a) We haveδZπ∗ − π∗δY = {E + int(θ)}π∗.
(b) Let p = 0. Then the following conditions are equivalent.

(i) We have10
Zπ

∗ = π∗10
Y .

(ii) For all λ ∈ R, ∃µ(λ) ∈ R soπ∗E(λ,10
Y ) ⊆ E(µ(λ),10

Z).
(iii) The fibres ofπ are minimal.

(c) Let 16 p 6 dim(Y ). Then the following conditions are equivalent.
(i) We have1p

Zπ
∗ = π∗1p

Y .
(ii) For all λ ∈ R, ∃µ(λ) ∈ R soπ∗E(λ,1p

Y ) ⊆ E(µ(λ),1
p

Z).
(iii) The fibres ofπ are minimal and the horizontal distribution ofπ is integrable.

(d) Assume there exists8p ∈ E(λ,1p

Y ) so thatπ∗8p ∈ E(µ,1p

Z) for λ 6= µ. Thenp 6= 0
andλ < µ.

Definition 2.2. The Hopf fibration. Let H be the quaternions. LetS3 be the unit sphere in
R4 = C2 = H; S3 is a group under quaternion multiplication. Ifx ∈ S3, let

x = (x0, x1, x2, x3) = (z0, z1) = x0 + x1i + x2j + x3k

wherez0 = x0 + ix1 andz1 = x2 + ix3. Let ∂a = ∂/∂xa. Let ζ1(x) = i · x, ζ2(x) = j · x,
andζ3(x) = k ·x. The vectors{x, ζ1(x), ζ2(x), ζ3(x)} form an orthonormal basis forR4 so
{ζ1, ζ2, ζ3} is an orthonormal frame forT S3. Let {ζ 1, ζ 2, ζ 3} be the dual coframe for the
cotangent bundleT ∗S3. Theζ i andζi are invariant underright multiplication. We compute

ζ1 = −x1∂0 + x0∂1 − x3∂2 + x2∂3, [ζ2, ζ3] = −2ζ1

ζ2 = −x2∂0 + x3∂1 + x0∂2 − x1∂3, [ζ3, ζ1] = −2ζ2

ζ3 = −x3∂0 − x2∂1 + x1∂2 + x0∂3, [ζ1, ζ2] = −2ζ3

ζ 1 = −x1 dx0 + x0 dx1 − x3 dx2 + x2 dx3, dζ 1 = 2ζ 2 ∧ ζ 3

ζ 2 = −x2 dx0 + x3 dx1 + x0 dx2 − x1 dx3, dζ 2 = 2ζ 3 ∧ ζ 1

ζ 3 = −x3 dx0 − x2 dx1 + x1 dx2 + x0 dx3, dζ 3 = 2ζ 1 ∧ ζ 2.
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We let the circleS1 ⊂ C act onS3 by complex multiplication from the left; letπ be the
natural projection fromS3 to the quotient manifoldS1\S3 = CP 1 = S2; this is the Hopf
fibration. In terms of coordinates,π : S3 → S2 is defined by

π(x) = (2 Re(z0z̄1), 2 Im(z0z̄1), |z0|2 − |z1|2)
= (2(x0x2 + x1x3), 2(x1x2 − x0x3), x0x0 + x1x1 − x2x2 − x3x3).

Since x → eit · x defines the one-parameter flow for the vector fieldζ1, π∗ζ1 = 0. If
y = (y0, y1, y2) are the standard coordinates onR3, then

π∗(dy0 ◦ dy0 + dy1 ◦ dy1 + dy2 ◦ dy2) = 4ζ 2 ◦ ζ 2 + 4ζ 3 ◦ ζ 3.

We letgn be the standard metric onSn. Thenπ∗ is a Riemannian submersion from(S3, g3)

to (S2, 1
4g2) with vertical distribution spanned byζ1 and horizontal distribution spanned by

{ζ2, ζ3}. We can check this normalization by computing 2π2 = vol(S3, g3) = π · (2π) =
vol(S2, 1

4g2) ·vol(S1, g1). We have thatπ∗ν2 = ζ 2 ∧ ζ 3. Note that although the vector fields
{ζ2, ζ3} and covector fields{ζ 2, ζ 3} are horizontal, they arenot horizontal lifts of vector
and covector fields onS2.

Theorem 2.3. (a) Let π : (S3, g̃3) → (S2, 1
4g2) be a Riemannian submersion whereg̃3

is a right invariant metric onS3. There exist constantsα > 0 andβ = (β2, β3) so that
g̃3 = g̃3(α, β2, β3) = χ1 ◦ χ1 + χ2 ◦ χ2 + χ3 ◦ χ3 for

χ1 := α−1ζ1 χ2 := ζ2 + β2ζ1 χ3 := ζ3 + β3ζ1

χ1 := α(ζ 1 − β2ζ
2 − β3ζ

3) χ2 := ζ 2 χ3 := ζ 3.

(b) Assumeβ = 0. Then the fibres ofπ are geodesics and
(i) We haveπ∗80 ∈ E(λ,10

S3) ⇔ 80 ∈ E(λ,10
S2).

(ii) We haveπ∗81 ∈ E(λ,11
S3) ⇔ 81 = d80 for 80 ∈ E(λ,10

S2).

(iii) We haveπ∗82 ∈ E(λ,12
S3) ⇔ 82 = cν2 andλ = 4α2.

(c) Let β 6= 0. Then the fibres ofπ are not geodesics. Ifπ∗8p ∈ E(λ,1p

S3), thenp = 0,
80 = c, andλ = 0.

Remark 2.4. The metricsg̃3(α, 0, 0) are a smooth one-parameter family of Riemannian
submersions where the eigenvalue changes from 0 to any real value. These metrics are
generalizations of the metrics considered in [21], example 4.3.

Proof. We compute

[χ1, χ2] = −2α−1χ3 + 2β3χ1 [χ3, χ1] = −2α−1χ2 + 2β2χ1

[χ2, χ3] = −2α(1 + |β|2)χ1 + 2β2χ2 + 2β3χ3

dχ1 = 2α(1 + |β|2)χ2 ∧ χ3 − 2β2χ
3 ∧ χ1 − 2β3χ

1 ∧ χ2

dχ2 = 2α−1χ3 ∧ χ1 − 2β2χ
2 ∧ χ3

dχ3 = 2α−1χ1 ∧ χ2 − 2β3χ
2 ∧ χ3

d(χ1 ∧ χ2) = 0 d(χ2 ∧ χ3) = 0 d(χ3 ∧ χ1) = 0

θ = g̃3(∇χ1χ1, χ2)χ2 + g̃3(∇χ1χ1, χ3)χ3

= − g̃3(χ1, [χ1, χ2])χ2 − g̃3(χ1, [χ1, χ3])χ3 = −2β3χ2 + 2β2χ3

ω(χ1, χ2, χ3) = 1
2 g̃3(χ1, [χ2, χ3]) = −α(1 + |β|2)

E = −2α(1 + |β|2) ext(χ1) int(χ2) int(χ3).
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Since the fibres ofπ are one dimensional, they are minimal if and only if they are geodesics;
this happens if and only ifβ = 0.

Let 0 6= φp = π∗8p ∈ E(µ,1p

S3) for somep. Suppose first thatp = 0 and that80 is
non-constant. We use theorem 2.1 to compute

10
S3φ0 − π∗10

S280 = −2β3χ2φ0 + 2β2χ3φ0 = (−2β3ζ2 + 2β2ζ3)φ0.

Suppose thatβ = (β2, β3) 6= 0. We note that the push forward ofβ2ζ3 − β3ζ2 ranges over
the circle of radius 4|β|2 in TyS2 as z ∈ π−1(y). Since10

S3φ0 = µφ0, 2(β2ζ3 − β3ζ2)φ0

is the pull-back of a function fromS2. Thus (β2ζ3 − β3ζ2)φ0 must vanish identically and
hence all the derivatives of80 are constant contrary to our assumption. Ifβ = 0, then
the fibres ofπ are totally geodesic andπ∗ intertwines10

S2 and10
S3 by theorem 2.1; this

handles the casep = 0.
Suppose next thatp = 2. Let82 = 80ν2, let φ2 = π∗82, and letφ0 = π∗80. We use

theorem 2.1 to seeδS3φ2 − π∗δS282 = φ0(−2β2χ
2 − 2β3χ

3 + 2α(1 + |β|2)χ1) and

12
S3φ2 − π∗12

S282 = (−2β3ζ2φ0 + 2β2ζ3φ0 + E23φ0)χ
2 ∧ χ3

+(2α(1 + |β|2)ζ3φ0 + E31φ0)χ
3 ∧ χ1 − (2α(1 + |β|2)ζ2φ0 + E12φ0)χ

1 ∧ χ2

for a suitably chosen constantEij . Becauseφ2 is an eigenform of12
S3, the left-hand side

of this equation is the pull-back of a 2-form from the base and consequently the coefficient
of χ1 ∧ χ2 vanishes. This shows 2α(1 + |β|2)ζ2φ0 = −E12φ0. The same argument as that
given for functions shows thatφ0 is constant so we may assumeφ2 = ν2 so δS2ν2 = 0 and

δS3π∗ν2 = −2β2χ
2 − 2β3χ

3 + 2α(1 + |β|2)χ1

= 2α2(1 + |β|2)ζ 1 − 2(1 + α2(1 + |β|2))(β2ζ
2 + β3ζ

3).

The derivative of this must involve only horizontal terms; thus the coefficients ofζ 2 andζ 3

must vanish. This impliesβ = 0 and12
S3π

∗ν2 = 4α2π∗ν2. This handles the casep = 2.
Finally, we discuss the casep = 1. Let φ1 = π∗81 ∈ E(µ,11

S3); µ 6= 0 as the first
de Rham cohomology groupH 1(S3; C) vanishes. Let82 = d81 andφ2 = dφ1 = π∗82.
Since we have that

dδφ2 = dδ dφ1 = d(δ d + dδ)φ1 = µ dφ1 = µφ2

we can apply (c) to see that dφ1 = cπ∗ν2. This means d81 = cν2 and hencec = 0. Thus
dφ1 = 0. Let φ0 = µ−1δφ1 ∈ C∞S3. Then

dφ0 = µ−1 dδφ1 = µ−111
S3φ1 = φ1.

Consequently, 0= φ1(ζ1) = dφ0(ζ1) = ζ1(φ0) so φ0 is constant on the fibre circles. This
impliesφ0 = π∗80 for 80 ∈ C∞S2. Furthermore

10
S3φ0 = δ dφ0 = µ−1δdδφ1 = µ−1δ11

S3φ1 = δφ1 = µφ0.

If φ0 is constant, 0= dφ0 = φ1 which is false. Ifφ0 is not constant, thenβ = 0. �

3. Principal bundles

In this section, we discuss generalizations of theorem 2.3 to higher dimensions. We begin
by recalling some basic definitions and refer to Eguchiet al [9] for further details. Let
G be a compact Lie group and letgG be a bi-invariant Riemannian metric onG. Let
G → P

π−→Y be a principal bundle over a closed manifoldY . We choose a metricgP on
P so thatgP is invariant under theG action, so that the restriction ofgP to the fibres isgG,
and so thatπ : (P, gP ) → (Y, gY ) is a Riemannian submersion. The horizontal distribution
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H of π is invariant under theG action and defines a principal connection onP . Such a
metric will be called abundlemetric and the fibres are necessarily totally geodesic. For
example, the metric̃g3(α, β2, β3) on the Hopf bundleS1 → S3 → S2 discussed in section 2
is a bundle metric if and only ifβ2 = β3 = 0.

Let gP be a bundle metric. Lety = (ya) be a system of local coordinates onY and let
s be a local section toP . The map(g, y) → s(y) ·g gives local coordinates onP . Let {Ai}
be a basis for the right-invariant vector fields onG and let{Ai} be the corresponding dual
basis for the right-invariant covector fields onG. The horizontal distributionH is spanned
by vector fields of the formχa := ∂

y
a +0ia(y)Ai and the vertical distribution is spanned by

the Ai . The connection 1-form of the principal connection is a Lie-algebra valued 1-form
given byA := 0ia(y) dya ⊗ Ai . The curvatureF of the principal bundle is the Lie-algebra
valued 2-form given by

F := dya ∧ dyb ⊗ (∂a0
i
bAi − ∂b0

i
aAi + 0ia0

j

b [Ai ,Aj ]) = gijωabi dya ∧ dyb ⊗ Aj .

Thus the tensorω defined in section 2 is the curvature of the principal connection onP.

Let SO(n) be the special orthogonal group. Lete1 := (1, 0, . . . ,0) ∈ Sn−1. If
σ ∈ SO(n), let π : σ → e1 · σ define the principal bundleSO(n− 1) → SO(n)

π−→ Sn−1.
The bi-invariant metricgSO on SO(n) is unique up to scale; we choose the normalizing
constant so thatπ : (SO(n), gSO) → (Sn−1, gn−1) is a Riemannian submersion with respect
to the standard metricgn−1 on the sphere;gSO is a bundle metric.

Theorem 3.1. Let g̃SO andg̃n−1 be metrics onSO(n) and onSn−1 so thatπ is a Riemannian
submersion from(SO(n), g̃SO) to (Sn−1, g̃n−1). Assumen > 4.

(a) We do not assumẽgSO is a bundle metric. Let̃νn−1 be the volume element ofSn−1

defined by the metric̃gn−1. If π∗ν̃n−1 ∈ E(µ,1n−1
SO(n)), thenµ = 0 andn = 4 or n = 8.

(b) Let gn−1 andgSO be the standard metrics.
(i) Suppose that80 ∈ E(λ,10

Sn−1). Then we have thatπ∗80 ∈ E(λ,10
SO(n)),

d80 ∈ E(λ,11
Sn−1), andπ∗ d80 ∈ E(λ,11

SO(n)).
(ii) Suppose that8p ∈ E(λ,1

p

Sn−1) and thatπ∗8p ∈ E(µ,1
p

SO(n)). Thenλ = µ and
eitherp = 0 or p = 1. If p = 1, then81 = d80 for some80 ∈ E(µ,10

Sn−1).

Remark 3.2. If n = 3, then SO(3) = RP 3 and we haveS1 → RP 3 → S2; this
Riemannian submersion was studied by the third author in [21]. LetSP IN(n) be the
spinor group; SP IN(n) is the universal cover ofSO(n) for n > 3. The double
cover Z2 → SP IN(n) → SO(n) then lets us construct a Riemannian submersion
SP IN(n − 1) → SP IN(n) → Sn−1. If n = 3, SP IN(3) = S3 and we recover the
Hopf fibrationS1 → S3 π−→ S2 discussed in section 2. Theorem 3.1 extends immediately
to the spinor groups.

We will derive theorem 3.1 from the following more general result which shows that
eigenvalues cannot change ifH 1(G; C) = 0.

Theorem 3.3. Let G be a compact Lie group withH 1(G; C) = 0. We assume that
π : (P, gP ) → (Y, gY ) is a Riemannian submersion whereG → P

π−→Y is a principal
bundle.

(a) We do not assumegP is a bundle metric. If 0 6= 8p ∈ E(0,1p

Y ) and if
π∗8p ∈ E(µ,1

p

P ), thenµ = 0. If in addition,8p is the volume form onY, then the
mean curvature vectorθ and the curvatureω of π vanish.

(b) We do assume thatgP is a bundle metric. If 0 6= 8p ∈ E(λ,1
p

Y ) and if
π∗8p ∈ E(µ,1p

P ), thenλ = µ. If d8p = 0, thenEπ∗8p = 0.
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Proof. Let {Fa} be a local orthonormal coframe onY . We take a local product
decomposition ofP . If A = {1 6 a1 < . . . < aq 6 dim(Y )} is a multi-index, we let
FA = Fa1 ∧ . . . ∧ Faq ; the {FA} for |A| = q are a local orthonormal frame for3qY .

Suppose the hypothesis of (a) holds. Since8p is harmonic, we may apply theorem 2.1
to seeµπ∗8p = dψp−1 for

ψp−1 := (int(θ)+ ωabi ext(ei) int(f a) int(f b))π∗8p.

We average over the action of the fibreG with respect to Haar measure to define

ψ̃p−1 :=
∫
g∈G

(g∗ψp−1) dg µπ∗8p = dψ̃p−1.

We may expressψp−1 = 6|A|=p−2αAπ
∗FA where theαA are suitably chosen 1-forms on

P . Let

βA :=
∫
g∈G

g∗αA dg ψ̃p−1 = 6|A|=p−2βAπ
∗FA.

SinceβA is G invariant, we may decomposeβA = π∗γA + 4A whereγA ∈ C∞31Y and
where4A = 4A(y) is an invariant 1-form on the fibre with coefficients which depend on
the base. Since d̃ψp−1 = µπ∗8p is the pull-back of a form from the base, the terms in
dψ̃p−1 which involve vertical 2-forms must vanish. This implies the restriction of d4A to
the fibre vanishes. SinceH 1(G; C) = 0, there are no non-trivial closed invariant 1-forms on
the fibre. This shows that4A = 0 and thereforẽψp−1 does not involve the fibre coordinate.
Thus there exists9p−1 ∈ C∞3Y so ψ̃p−1 = π∗9p−1. This implies thatµ8p = d9p−1 and
henceµ = 0. The equationsψp−1 = δπ∗8p and dψp−1 = µπ∗8p = 0 imply

0 = (dψp−1, π
∗8p)L2(P ) = (ψp−1, δπ

∗8p)L2(P ) = (ψp−1, ψp−1)L2(P )

so ψp−1 = 0. We decomposeψp−1 into horizontal and vertical components to see
int(θ)π∗8p = 0 andEπ∗8p = 0. If 8p is the volume form onY, it then follows that
θ = 0 andω = 0. This completes the proof of the first assertion.

Next suppose that the hypothesis of (b) holds. SincegP is a bundle metric, the fibres
of π are totally geodesic soθ = 0. Suppose first d8p = 0 so dπ∗8p = 0. As in the proof
of (a), we expand

Eπ∗8p = (δP π
∗ − π∗δY )8p = βA ∧ π∗FA

where theβA are vertical covectors. SincegP is a bundle metric, the construction is
G equivariant so theβA are G invariant. Sinceθ = 0 and d8p = 0, we have that
dEπ∗8p = 1

p

Pπ
∗8p − π∗1p

Y8p = (µ − λ)π∗8p has no vertical dependence. Thus the
vertical derivative of the restriction ofβA to the fibres vanishes. SinceH 1(G; C) = 0 and
sinceβA is G invariant, this implies the restriction ofβA to the fibres vanishes and hence
βA = 0 asβA ∈ V∗. ConsequentlyEπ∗8P = 0 andµ = λ. Now suppose that d8p 6= 0.
Sinceπ∗ d8p = dπ∗8p ∈ E(µ,1

p+1
Y ), we may replace8p by d8p to concludeλ = µ

and complete the proof. �

Proof. We can now prove theorem 3.1(a). Letπ : (SO(n), g̃SO) → (Sn−1, g̃n−1) be a
Riemannian submersion where we do not assumeg̃SO is a bundle metric. Let̃νn−1 be
the volume form onSn−1 with respect to the metric̃gn−1; ν̃n−1 is harmonic. We suppose
π∗ν̃n−1 ∈ E(µ,1n−1

SO(n)). Sincen > 4, π1SO(n − 1) = Z2 andH 1(SO(n − 1); C) = 0.
Thus we may apply theorem 3.3 to see thatµ = 0, θ = 0, andω = 0. SinceSn−1 is simply
connected, the vanishing of the curvature implies that the fibration has a global section, see
for example [10]. This implies thatSn−1 is parallelizable and thereforen− 1 = 1, 3, 7; see
for example [2, 6]. �
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Remark 3.4. If n = 4, let F be the quaternions and ifn = 8, let F be the Cayley
numbers. Let{ei} be a basis forF where e1 = 1. Then the mapx → (e1x, . . . , enx)

is a section to the mapπ and defines a splittingSO(n) = SO(n − 1) × Sn−1 such that
π is projection on the second factor. We use this splitting to define a product metric on
SO(n); π∗νn−1 is harmonic for such a metric. Thus theorem 3.1 is sharp. This gives a
non-standard horizontal structure forπ with zero curvature;π∗νn−1 is not harmonic with
respect to the standard bi-invariant metric onSO(n). We can describe such a structure
if n = 4 which is right invariant as follows. Let{ei} be the standard orthonormal basis
for Rn. Let so(n) be the Lie algebra ofSO(n); we identify so(n) with the set of skew
symmetricn × n matrices. We take elementsAij of so(n) for 1 6 i, j 6 n whereAij is
the skew-adjoint transformationAij : ej → ei → −ej . The Lie algebra structure is given
by [Aij , Ak`] = δjkAi` − δj`Aik − δikAj` + δi`Ajk. Let H = span{χ14, χ24, χ34} define the
horizontal subspace where

χ14 := A14 + A23 χ24 := A24 − A13 χ34 := A34 + A12.

The vertical spaceV = span{A13, A23, A12} = so(3). Then g(Aab, [Aab, χcn]) = 0 for
1 6 a, b, c 6 3 soθ = 0 and the fibres are minimal. Furthermore

[χ14, χ24] = −2χ34 [χ24, χ34] = −2χ14 [χ34, χ14] = −2χ24

so the horizontal distribution is integrable. Thus by theorem 2.1,π∗ intertwines the
eigenspaces of the Laplacian.

Proof. We can now prove theorem 3.1(b). LetgSO be the bi-invariant metric onSO(n)
and letgn−1 be the standard metric onSn−1. Assertion b(i) is immediate from theorem 2.1
since the fibres ofπ are totally geodesic in this situation. Let8p ∈ E(λ,1

p

Sn−1) and
π∗8p ∈ E(µ,1p

SO(n)). Sincen > 4 and since the metric isSO(n − 1) invariant, we may
apply theorem 3.3 (b) to seeλ = µ.

Suppose first that d8p = 0 and thatp > 2. We compute that

E = 616a<b<n ext(Aab) int(Aan) int(Abn).

Fix a pointx0 ∈ Sn−1 where8p(x0) 6= 0. Since the{Aan} are basis forH∗ and sincep > 2,
there exista, b so ext(Aab) int(Aan) int(Abn)8p(x) 6= 0. By theorem 3.3(b),Eπ∗8p = 0
so this is impossible.

Suppose next that d8p 6= 0 and thatp > 1. Replacing8p by d8p andp by p+ 1, we
again arrive at a contradiction using the argument of the previous paragraph. We conclude
therefore either thatp = 0 or thatp = 1 and d8p = 0. Suppose thatp = 1 and d81 = 0.
SinceH 1(Sn−1; C) = 0, µ > 0. Let 80 = µ−1δY81. Then80 ∈ E(µ,10

Sn−1) and
d80 = 81. �

Theorem 3.3 shows that eigenvalues do not change for a principal bundles-with-structure
groupG if H 1(G; C) = 0 and if the metric onP is a bundle metric. In fact theorem 3.3
is sharp. Letζ a be the basis for the Lie algebra ofS3 discussed above; recall that
ζ 2 ∧ ζ 3 ∈ E(4,12

S3).

Theorem 3.5. Let G be a compact connected Lie group withH 1(G; C) 6= 0. Let
π : P := G×S3 → S3 be projection on the second factor. LetgG be a bi-invariant metric on
G. For anyε ∈ R, there exists a bundle metricgε onP so thatπ∗(ζ 2∧ζ 3) ∈ E(4ε2+4,12

P ).
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Proof. Choose an orthonormal basis4i for the Lie algebra ofG so that d41 = 0. Then
41 is harmonic. SinceG is connected, it acts trivially on the harmonic spaces and hence
41 is bi-invariant. Define

ds2
ε = (41 + εζ 1) ◦ (41 + εζ 1)+6i>24

i ◦4i +6aζ
a ◦ ζ a.

The restriction of ds2
ε to the fibres ofπ is gG; since41 is bi-invariant,gε is invariant under

the action ofG onP and is a bundle metric. Let4i andζa be the corresponding dual-vector
fields. Then{4i} span the vertical spaceV and{ζ1 − ε41, ζ2, ζ3} span the horizontal space
H of π : (P, gε) → (S3, g3). Sincegε(41, [ζ2, ζ3]) = −2ε

E = −2ε ext(41 + εζ 1) int(ζ 2) int(ζ 3).

Let 82 = ζ 2 ∧ ζ 3. Since d41 = 0 and d82 = 0

(12
Pπ

∗ − π∗12
S3)82 = 2ε d(41 + εζ 1) = 4ε282. �

Remark 3.6. We identify R2k = Ck to embedS2k−1 ⊂ Ck for k > 2. If x ∈ S2k−1, let
ζ1(x) = i · x define a non-vanishing vector field onS2k−1. Let ζ 1 be the corresponding
co-vector field where we use the standard metricg2k−1 on S2k−1. If σ : S2k−1 → CP k−1

is the canonical projection from the sphere to complex projective space, and ifω2 is the
Kaehler form onCP k−1, thenσ ∗ω2 = dζ 1 modulo a suitable normalization and

82p = (dζ 1)p ∈ E(λp,k,12p
S2k−1)

for 1 6 p < k and for suitably chosenλp,k > 0. Let P = G× S2k−1 and let

ds2
ε := (41 + εζ 1) ◦ (41 ◦ εζ 1)+6i>24

i ◦4i + ds2
S2k−1.

One can then verify thatπ∗82p ∈ E(λp,k + cp,kε
2,1

2p
P ) for suitably chosen positive

constantscp,k. This provides higher-dimensional examples and forms of higher degree
where eigenvalues change. We omit details in the interests of brevity.

4. The complex Hopf fibration

We now turn to complex geometry. Letw = (wi) for wi := ui + √−1vi be local
holomorphic coordinates on manifoldM of complex dimensionm. We define

J (∂/∂ui) := ∂/∂vi J (∂/∂vi) := −∂/∂ui dwi := dui + √−1 dvi

dw̄i := dui − √−1 dvi.

A Riemannian metricgM is Hermitian if gM(X, Y ) = gM(JX, JY ) for all real tangent
vectors; we extend such a metric to the complexified tangent bundle to be complex linear
in the first factor and conjugate linear in the second factor. Let

3p,qM := span|I |=p,|J |=q{dwI ∧ dw̄J }
where dwI := dwi1∧. . .∧ dwip and dw̄J := dw̄j1∧. . .∧ dw̄jq . The almost complex structure
J and the vector bundles3p,qM are invariantly defined. We decompose d= ∂ + ∂̄ and
δ = δ1 + δ2 for

∂ : C∞3p,qM → C∞3p+1,qM ∂̄ : C∞3p,qM → C∞3p,q+1

δ1 : C∞3p+1,qM → C∞3p,qM δ2 : C∞3p,q+1M → C∞3p,q

δ1 is the adjoint of∂ andδ2 is the adjoint of∂̄. Let

1
p,q

M = (∂̄δ2 + δ2∂̄) on C∞3p,qM.
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Let π : Z → Y be a Riemannian submersion. In the complex setting, we will always assume
thatZ andY are complex manifolds, thatπ is holomorphic, and that the metrics onZ and on
Y are Hermitian. The complexification of pull-back definesπ∗ : C∞3p,qY → C∞3p,qZ.

Let Z := S1 × S3 be the Hopf manifold. Letζ0 and ζ 0 be the usual orthonormal
basis for the tangent and cotangent bundles of the circle and letζi and ζ i be the right-
invariant vector fields and covector fields defined in section 2. We giveZ the product
metric ds2 = ζ 0 ◦ ζ 0 + ζ 1 ◦ ζ 1 + ζ 2 ◦ ζ 2 + ζ 3 ◦ ζ 3. The Hopf manifold is a complex manifold
which is not Kaehler. LetJ (ζ0) = ζ1, J (ζ1) = −ζ0, J (ζ2) = ζ3, andJ (ζ3) = −ζ2 define an
almost complex structure onZ; J is unitary so ds2 is a Hermitian metric. The holomorphic
tangent bundle is spanned by

ξ0 := 1
2(ζ0 − √−1ζ1) and ξ1 := 1

2(ζ2 − √−1ζ3)

4[ξ0, ξ1] = −√−1([ζ1, ζ2] − √−1[ζ1, ζ3]) = 2
√−1ζ3 − 2ζ2 = −4ξ1

so the Nirenberg–Neulander integrability condition is satisfied and(Z, J ) is a complex
manifold. This can also be seen directly;Z = C2 − {0}/Z. We give S2 the standard
complex structure. Let̃π(λ,x) = π(x) : Z → S2 define the standard fibration from the
Hopf manifold toS2. Thenπ̃∗ξ0 = 0 andπ̃∗ξ1 is a holomorphic tangent vector onS2. Thus
π̃∗ is a holomorphic Riemannian submersion and the metrics involved are Hermitian. Note
that the metric onS2 is Kaehler but that the metric onZ is not Kaehler. Letν2 be the
volume form onS2.

Lemma 4.1. (a) We haveν2 ∈ E(0,11,1
S2 ) and π̃∗ν2 ∈ E(2,11,1

Z ).

(b) We have10
Z = −(ζ 2

0 + ζ 2
1 + ζ 2

2 + ζ 2
3 ) and 210,0

Z = 10
Z + 2

√−1ζ1.
(c) We have10

Z1
0,0
Z = 1

0,0
Z 1

0
Z.

Proof. It is immediate from the calculations that we have performed previously that
δZπ̃

∗ν2 = 2ζ 1. We project on30,1Z to see δZ,2π̃∗ν2 = √−1(ζ 0 − √−1ζ 1) so
dδZ,2π̃∗ν2 = 2ζ 2 ∧ ζ 3. Since this belongs to31,1, and since∂̄ π̃∗ν2 = 0, we have that
1

1,1
Z π̃

∗ν2 = ∂̄δZ,2π̃
∗ν2 = 2π̃∗ν2. Let ? be the Hodge operator. We compute

ξ0 = 1
2(ζ0 − √−1ζ1) ξ1 = 1

2(ζ2 − √−1ζ3)

ξ0 = ζ 0 + √−1ζ 1 ξ1 = (ζ 2 + √−1ζ 3)

∂f = ξ0f · ξ0 + ξ1f · ξ1 ∂̄f = ξ̄0f · ξ̄0 + ξ̄1f · ξ̄1

?(ξ̄0) = − 1
2 ξ̄

0 ∧ ξ1 ∧ ξ̄1 ? (ξ̄1) = 1
2 ξ̄

1 ∧ ξ0 ∧ ξ̄0 d(?ξ̄0) = d(?(ξ̄1) = 0.

Sinceδ2 = δ = − ? d? on C∞30,1, we have

1
0,0
Z f = − ? d ? (ξ̄0f · ξ̄0 + ξ̄1f · ξ1) = 1

2 ? d(ξ̄0f · ξ̄0 ∧ ξ1 ∧ ξ̄1 + ξ̄1f · ξ̄1 ∧ ξ0 ∧ ξ̄0)

= 1
2 ? (ξ0ξ̄0f + ξ1ξ̄1f )ξ

0 ∧ ξ̄0 ∧ ξ1 ∧ ξ̄1 = −2(ξ0ξ̄0 + ξ1ξ̄1)f

= − 1
2(ζ

2
0 + ζ 2

1 + ζ 2
2 + ζ 2

3 + √−1[ζ0, ζ1] + √−1[ζ2, ζ3])

= − 1
2(ζ

2
0 + ζ 2

1 + ζ 2
2 + ζ 2

3 − 2
√−1ζ1)

1
0,0
Z + 1̄

0,0
Z = 10

Z = −(ζ 2
0 + ζ 2

1 + ζ 2
2 + ζ 2

3 )

1
0,0
Z − 1̄

0,0
Z = 2

√−1ζ1, 210,0
Z = 10

Z + 2
√−1ζ1.

We show10,0
Z and10

Z commute by checking

−[ζ1,1
0
Z] = {[ζ1, ζ

2
2 ] + [ζ1, ζ

2
3 ]} = [ζ1, ζ2]ζ2 + ζ2[ζ1, ζ2] + [ζ1, ζ3]ζ3 + ζ3[ζ1, ζ3]

= − 2ζ3ζ2 − 2ζ2ζ3 + 2ζ2ζ3 + 2ζ3ζ2 = 0. �
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Remark 4.2. We can now give the spectral resolution of10,0 on the Hopf manifold; these
results also follow from work of Bedford and Suwa [3] who used a different approach.
The mapeit : (λ,x) → (eitλ,x) gives a circle action onZ by isometries. We decompose
L2(Z) = ⊕jλ

j · L2(S3) under this action. The real and complex Laplacians onZ respect
this decomposition so it suffices to study10

S3 and10
S3 + 2

√−1ζ1 to determine the spectral
resolution. Letx be the standard coordinates onS3. Let H(k) be the space of harmonic
polynomials of degreek. If p ∈ H(k), the restriction ofp to the sphere is an eigenfunction
of the Laplacian and10

Zp = k(k + 2)p. Furthermore all eigenfunctions of the Laplacian
on S3 arise in this fashion. Thus the decompositionL2(Z) = ⊕j,kλ

j · H(k) is the spectral
resolution of the real Laplacian10

Z and the associated eigenvalue isj2 + k(k + 2).
The vector fieldζ1 is left quaternion multiplication by

√−1 and generates an isometric
circle actionφ(t) : z → (cos(t) + √−1 sin(t))z which commutes with the real Laplacian.
We decompose the eigenspace of the Laplacian onS3 into eigenspaces of this actionH(k) :=
⊕`H(k, `) whereφ(t)∗p = e

√−1`tp or equivalentlyζ1p = √−1`p for p ∈ H(k, `). This
means that we may decomposeL2(Z) = ⊕j,k,`λ

j · H(k, `) where the eigenvalue of10
Z is

j2 + k(k + 2) and the eigenvalue of 210
Z is j2 + k(k + 2) − 2`. Let z0 = x0 + √−1x1

and z1 = x2 + √−1x3. These are not, of course, holomorphic functions onZ. We
note ζ1z

i = √−1zi and ζ1z̄
0 = −√−1z̄i. The {z0, z1, z̄0, z̄1} generate the algebra of all

polynomials. Thus we see that we need−k 6 ` 6 k when studyingH(k, `) so

L2(Z) = ⊕j,−k6`6kλj · H(k, `).
The spacej = 0, ` = 0 corresponds to functions which are invariant under both circle
actions; such functions are the pull-back of eigenfunctions on the 2-sphere.

5. Conclusion

The Hopf fibration is an example of a non-bijective canonical transformation which arises
as the regularization of Kepler motion; the Hopf fibration leads to an inverse harmonic
oscillator problem. Pull-back is a transformation that connects operators with different
spectra; understanding the pull-back is useful in relating the quantum operators involved.

The real Hopf fibrationS3 → S2 and the complex Hopf fibrationS1 ×S3 → S2 provide
examples where the pull-back of a harmonic form from the base of a principal bundle is no
longer harmonic but is still an eigenform of the real Laplacian or the complex Laplacian
on the total space. We show that eigenvalues cannot change for a principal bundle if the
structure group hasH 1(G; C) = 0. We give examples of principal bundles overS3 with
structure groupG where eigenvalues change ifH 1(G; C) 6= 0. Further investigation of
this phenomena seems indicated to find other non-trivial examples; the eigenforms whose
eigenvalues change seem to be important in understanding the spectral geometry involved.
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